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A simple phenomenological drag relation is used to characterize weak dynamic 
coupling of a liquid membrane to an adjacent solid substrate. With this linear 
velocity-dependent drag relation, the inertialess equations of motion for membrane 
flow are easily solved for steady translation and rotation of a disk-like particle. The 
resulting drag coefficients exhibit functional dependencies on the dimensionless 
particle size very similar to the relations obtained for particle motion in a membrane 
bounded by semi-infinite liquid domains (Hughes et al. 1981), although the scaling of 
particle size is different. Within this phenomenological approach, diffusivities of 
molecular probes in membranes can be used to investigate the intrinsic molecular 
drag at  a solid-liquid membrane interface and to estimate properties of thin 
lubricating liquid layers between membrane and substrate. 

1. Introduction 
Recently, there has been significant research and technological interest in coupling 

molecularly thin liquid-crystal membranes to solid substrates (Barlow 1980 ; Roberts 
& Pitt 1983). One technique, known as Langmuir-Blodgett film deposition, utilizes 
a monolayer film balance and immersion/withdrawal of the substrate through the 
monolayer interface to produce one or more condensed layers on the substrate 
(Blodgett & Langmuir 1937). This technique (as well as others which involve 
chemical treatment of the substrate for subsequent bonding of molecular layers) 
takes advantage of the amphiphilic (surfactant) character of these molecules. A 
specific approach used to  study the dynamic interaction between membrane and 
substrate is to measure the translational (surface) diffusivity of molecular probes 
incorporated in the membrane (Seul & McConnell 1986). Changes observed in 
diffusivity between a free (unsupported) membrane and one associated with a rigid 
substrate reflect both the degree of membrane coupling to the substrate and 
alterations in membrane state in the presence of the substrate. Hence, we have set 
out to  derive relations for particle mobility (translational and rotational) in an 
anisotropic fluid layer as a function of an intrinsic frictional parameter which can be 
used to characterize weak membrane-substrate interactions. 

Self-diffusion of molecular probes in molecularly thin membranes has been studied 
for nearly twenty years by biophysical scientists as a method for determination of 
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viscous properties of both synthetic and natural (cell) membranes (Edidin 1974; Vaz, 
Derzko & Jacobson 1982). Einstein kinetic relations have been used to derive 
estimates of molecular mobility (velocity/drag) from measurements of particle 
diffusivities (D = k!l’ x mobility). The difficulty has been that analysis of the fluid 
mechanics of particle motion in an anisotropic (two-dimensional) liquid cannot yield 
a simple linear velocity dependence for drag in the inertialess limit if the velocity 
field is required to approach zero at infinite distance from the particle. Further, 
theoretical physicists have concluded that viscosity for a two-dimensional condensed 
liquid should diverge weakly as the logarithm of size of the domain (Forster, Nelson 
& Stephen 1977). Saffman (1976) recognized that this problem of two-dimensional 
symmetry will always be broken by transfer of momentum to an adjacent bulk (three 
dimensional) liquid. Even though the ‘Stokes paradox ’ and the divergence of surface 
viscosity are eliminated by coupling to the third dimension, solution of the inertialess 
Navier-Stokes equations is no simple task because of the dual boundary conditions 
(i.e. interfacial drag of the bulk liquid on the membrane exterior to the particle and 
the no-slip requirement of uniform vclocity for the liquid over the disk surface of the 
particle). Saffman examined the limit of large membrane viscosity (or low viscosity 
in the adjacent bulk liquid) with a singular perturbation approximation. His results 
show that in this limit there is essentially no dependence of drag on particle size (only 
a weak logarithmic effect). Hughes, Yailthorpe & White (1981) undertook the heroic 
task of obtaining the exact solution to  the equations of motion for any combination 
of membrane and adjacent liquid viscosities. Even with their elegant results, it is 
necessary to introduce a series expansion to approximate the drag coefficients. In  
these analyses, the important parameter is a characteristic length S for the flow-field 
region dominated by membrane dissipation, which is given by the ratio of membrane 
(two-dimensional) viscosity qm (dyn s/cm) to the adjacent liquid viscosity ,u (dyn s/ 
cm2), i.e. S 3 q,/,u. The extensive (size-dependent) properties of the drag coefficients 
reduce to  functions of the ratio of the particle radius a to  the length 6. (Note : in the 
analyses of Saffman and Hughes et al. the membrane is treated as a thin liquid region 
of viscosity ,urn thickness h,, with constant velocity over any cross-section. Without 
gradients across the membrane, thickness is of no consequence and the material can 
be treated as anisotropic with a surface viscosity vrn = ,urn hm.) 

In  this paper, we examine the effect of a rigid substrate in close proximity to a 
liquid membrane. We assume that transport of momentum into the third dimension 
is dominated by the presence of the substrate and can be modelled by simple 
interfacial drag which is proportional to membrane velocity. It will be seen that this 
substrate drag relation leads to ready solution of the two-dimensional equations of 
motion of the inertialess fluid membrane. The drag coefficients, obtained as simple 
analytical expressions valid for all particle sizes, provide useful relations for 
estimating frictional coefficients a t  molecular interfaces from diffusivity measure- 
ments. If a thin lubricating layer (thickness h)  of bulk liquid exists between the 
membrane and substrate, the same drag coefficients can be used with a surface 
frictional coefficient given by ,u/h provided that the layer thickness h 4 6. It is also 
interesting to note that the drag coefficients for a thin liquid layer between 
membrane and substrate closely approximate the results of Hughes et al. (1981) when 
the layer thickness is arbitrarily set equal to 6. As such, i t  is possible to estimate the 
effect of a semi-infinite bathing liquid above the membrane-solid substrate complex. 
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FIGURE 1. Schematic illustration of a disk-like particle (moving by either translation or rotation) 
in a condensed liquid membrane adsorbed to a solid substrate. Here, a thin lubricating layer of 
liquid is shown between the membrane and substrate. 

2. Surface flow fields for a disk moving (by translation or rotation) in a 
liquid membrane which drags on a solid substrate 

Figure 1 schematically illustrates a surfactant double-layer membrane adsorbed 
onto a solid substrate with a moving disk-like probe. Bilayer membranes are formed 
as condensed liquid crystals with very small area compressibility (Evans & Needham 
1987) ; hence, the divergence of the velocity field in the membrane plane is zero, 

Here, V defines the gradient operator in the plane of the surface and (v1,v2) are the 
components of velocity in the surface at a local point (xl, 2,) as shown in figure 1. For 
steady inertialess flow, the equations of motion are given by the Stokes 
approximation to the momentum equation for the fluid membrane subject to 
interfacial drag (shear stress a) from the solid substrate, 

V 7 0 + ~ m v 2 v  = b, (2.2) 

where 70 is the two-dimensional isotropic tension (dyn/cm) in the membrane (i.e. 
negative surface pressure) ; T~ is the membrane surface viscosity (dyn s/cm). We 
consider that the association of the membrane with the substrate is weak (not 
strongly bonded) ; thus, a reasonable approximation is to assume that the interfacial 
drag of the membrane on the substrate is proportional to the local velocity of the 
membrane relative to the substrate, i.e. 

ts = b, v ,  (2.31 
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where b, (dyn s/cm3) is an intrinsic coefficient of friction between the membrane and 
substrate. Here, the frictional interaction is treated as isotropic in the surface plane ; 
however, i t  is possible to introduce directional properties for a structured substrate. 

By taking: the two-dimensional curl of (2 .2 )  and introducing the vorticity 

the equations of motion reduce to a single scalar equation, 

with solutions for cylindrical symmetry given in part by modified Bessel functions 
and angular harmonics, which are regular at infinite distance from the disk. 

For steady translation of the disk, the velocity field in cylindrical coordinates is of 
the form 

(2.5) af(r) sin $, w = f,(r) sin +, 1 
r ar v, = -f(r) cos+, v4 = -- 

where 

Therefore, the solution for r 2 a ,  which satisfies the condition that the velocity 
approach zero a t  large distances, is given by 

where K O  and K ,  are modified Bessel functions of the second kind, orders zero and 
one ; a is the radius of the disk ; and E is a dimensionless parameter defined by 

E = (27. 
The coefficients (Cl, C,) are determined by the no-slip velocity boundary condition 
a t  r = a ,  

which leads to  
v, = vo cos q5, v4 = - vo sin q5, 

Equations (2.6) and (2.8) specify the surface flow field for the disk translating with 
steady velocity vo. 

Similarly, the solution for steady rotation of the disk, which satisfies the approach 
to zero a t  large distances, is given by the simple result, 
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where the coefficient C, is obtained from the no-slip velocity boundary condition 
a t  r = a ,  

QU 
V# =Oa,  c, =- 

KIM. 
(2.10) 

The next task is to determine the drag force and torque that is applied to the disk 
by the liquid membrane. 

3. Drag force and torque applied to the disk due to motion in the liquid 
membrane 

membrane stress resultants that act on the disk are given by 
For uniform translational motion of the disk through the membrane, the 

where the membrane isotropic tension ro is fo cos$ and is chosen to satisfy the 
equation of motion (2.2), i.e. 

a f w  af fo = T m r - + b S r - -  
ar ar 

and again f" E -V,"f. 

With (2.6) and (2.8), the stress resultant at r = a are expressed as 

The drag on the disk by the surrounding liquid membrane is the integral of the 
action of stress resultants around its perimeter, 

FD = -2a [r,, cos q5 -7r4 sin $1 d$. l 
From (3.2), the result is 

FD = K T ~ E V ~  [ E + -  23 
which gives the drag coefficient, A,, for translation: 

If there is intrinsic drag of the disk on the substrate (again assumed to be 
proportional to particle velocity), the drag coefficient will be modified : 

(3.3) 
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where the intrinsic particle drag is assumed to be 
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F = na2b, vo. 
DP 

Similarly, for uniform rotation of the disk, the relevant membrane stress resultant 
that acts on the disk is given by 

and the torque imparted by the liquid membrane to  the disk is 

M = -r7,+2na2. 
From (2.9) and (2.10), we find 

which leads to the rotational drag coefficient A,: 

Again, if there is intrinsic drag of the particle on the substrate, the rotational drag 
coefficient is expressed as 

If we neglect the intrinsic particle drag on the substrate, the drag coefficients AT and 
A,, normalized by 4n7, and 415y,a2 res ectively, depend only on E ,  which is the 
dimensionless particle radius e = a(b/y,)B. P 

4. Effect of thin layer of bulk liquid between membrane and substrate 
It is expected that for a thin lubricating layer of liquid between the membrane and 

solid substrate, the radial and angular dependence of the velocity field will be 
dominated by the membrane flow field and decrease linearly across the liquid layer 
(from the value a t  the membrane to zero a t  the substrate surface). As such, the 
frictional coefficient b for coupling of the membrane to the substrate is simply given 
by 6, = p / h ,  where p is the (three-dimensional) viscosity of the liquid and h is the 
thickness of the layer. This lubrication approximation is valid when the layer 
thickness h is much less than the characteristic length 6, i.e. h << ym/p. Similarly, for 
a membrane between two solid surfaces with two lubricating liquid layers, the 
frictional coefficient b, will be the sum of coeficients defined for each liquid layer. 
When h is arbitrarily set equal to 6 = ym/ (p l+p2)  in the lubrication approximation, 
the dimensionless particle radius becomes identical to  the definition used by Hughes 
et al. in their analysis of a membrane between semi-infinite liquid regions, i.e. 

€ = a (  0% +P2) ) = a(p1 +PA 
Tm 8 7m 

5. Results and discussion 
Dimensionless translational and rotational mobilities (4nym/A, and 4717, a2/A, 

respectively) are plotted in figure 2 versus the dimensionless particle radius E as 
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given by (3.3) and (3.5). Also shown in figure 2 are the results obtained by Hughes 
et al. as a function of dimensionless radius (scaled differently as mentioned above). 
I t  is apparent that our results are the same as those of Hughes et al. for e < 1 .  Indeed, 
the drag coefficients remain close even for large e( > 1) if we exclude the 12 terms in 
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(3.3) and (3.5), as shown in figure 2. The e2 terms are the direct particle drag on the 
substrate and the image interaction of the particle with the substrate which is 
produced by the potential (inviscid) flow in the membrane. The weak logarithmic 
dependence of the translational drag coefficient on particle size for small values of 
e( < 0.1) is common to all membrane analyses; this behaviour was initially derived 
and examined by Saffman (1976). The correlation between our results and those of 
Hughes et al. over a wide range of c-values is not surprising; it shows that the 
kinematics of flow in the membrane surface (two-dimensional) strongly influences the 
flow field in the third dimension (this feature was also recognized by Hughes 
et al.). 

Because of the similarity in functional characteristics of the drag coefficients for a 
membrane subject to simple substrate drag and a membrane immersed in an infinite 
liquid region, it is reasonable to make the ad hoe assumption that the presence of a 
semi-infinite bathing liquid on one side of a membrane closely associated with a solid 
substrate can be represented approximately by a simple frictional coefficient : 

b ,  = p/S. 

Therefore, the total drag from the substrate plus the semi-infinite bathing liquid is 
approximated by b = (b ,  + bm),  where b, is the substrate-membrane frictional 
coefficient. The dimensionless particle radius c is given by 

For a thin lubricating layer of liquid between membrane and substrate, this relation 
becomes 

e z a  (m+ 1 / 4 ) i  
vrn 

when the liquid layer has the same viscosity as the semi-infinite bathing liquid. 
Consequently for h < 6, the obvious result is that  the presence of the bathing liquid 
can be neglected. 

To illustrate the distance scales expected experimentally, consider bilayer 
membranes composed of diacyl lipid (surfactant) molecules for which a great deal of 
diffusion data exist. Translational diffusivities for probes of about cm diameter 
in lipid bilayers are in the range of lo-* to  low7 cm2/s when the bilayers are in the 
liquid state (Vaz et al. 1982). From the Einstein relation for particle diffusivity, D 
= k!l'/AT, the surface viscosity of a lipid bilayer membrane is estimated to be on the 

order of to dyn s/cm (P cm). As such, the characteristic length 6 is greater 
than cm (lo4 A) in water. For bilayer membranes weakly adsorbed to solid 
substrates, separation distances are not yet known ; however, preliminary studies 
with optical techniques indicate that lubricating liquid layers are much less than 

cm (100 A). Hence, the drag relations (3.3) and (3.5) are appropriate models and 
the superficial liquid can be neglected. 

E. E. is grateful to the Alexander-von-Humboldt-Foundation, Federal Republic of 
Germany, for a Senior Scientist Award. 
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